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General unequal reactivity in reversible step-growth polymerization has been modelled by assuming that 
monomer reacts at different rates. The generation relation for the moment-generating function G has been 
derived for polymerization in homogeneous continuous-flow stirred tank reactors. It is a non-linear ordinary 
differential equation and has been solved analytically using the Frobenius method. Analytical solution of 
the molecular-weight distribution of the polymer is obtained from this in a natural way and is shown to 
be valid even when there is flashing of condensation product. Subsequently, the molecular-weight 
distribution at equilibrium has been derived. 
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INTRODUCTION 

In step-growth polymerization chain growth occurs 
through the reaction of functional groups situated on 
polymer molecules. If the starting monomer is bifunc- 
tional (ARB), the resulting polymer is linear; and 
if it is multifunctional, the polymer acquires a branched 
or network structure. 

Like all reactions in nature, step-growth polymer- 
ization for bifunctional (ARB-type) monomers is also 
reversible and can be represented by: 

pm+p" kp,=. P , , + , + W  
t kp,m+n 

(1) 

In this representation, P,. and P, are molecules having 
m and n repeat units respectively, and W is the 
condensation product. Above kp,,,, is the rate constant 

t for the forward step and kp,,,+, is the rate constant for 
the reverse reaction between the condensation product 
W and a reacted -AB-  bond on a P,.+, molecule. 

Polymer formed by the step-growth mechanism always 
has a molecular-weight distribution (MWD) .  Any 
molecular-weight distribution can be equivalently 
represented by its moments. The kth unnormalized 
moment 2~ is defined as 

nk[p,] k=0 ,  1, 2 . . . .  (2) Ak__"*-- 
a = l  

It has been found that the physical properties of the 
polymer (for example, melt viscosity tear strength, 
adhesive tack, friction, impact strength, etc.) are found 
to depend upon its M W D .  Industrially, polymerization 

* To whom correspondence should be addressed 

is normally carried out in batch reactors 1-3. However, 
as plant throughput increases, continuous 4-6 reactors are 
preferred over batch reactors. Among the various 
continuous reactor geometries, homogeneous continuous- 
flow stirred tank reactors (HCSTRs) are the most 
common, and their schematic diagram is shown in 
Figure 1. 

As seen from equation (1), step-growth polymerization 
involves infinite elementary reactions, each having its 
own rate constant. The modelling of step-growth 
polymerization has been reviewed by several 
authors 1'v-12, and the simplest among these is based 
upon the equal-reactivity hypothesis proposed by 
Flory11. In this it is assumed that all functional groups 
react with the same rate constant, independent of the 
chain length of the polymer on which they are situated. 

There is evidence that the equal-reactivity hypothesis 
gives results that cannot explain experimental findings. 
Systems like phenylene sulphide 13, polymides 14, poly- 
urethanes 15'16, divinylbenzene with p-cresoP 7, phenol- 
formaldehyde~8 El and the ester interchange reaction on 
poly(ethylene terephthalate) 22-24 show either a chain- 
length-dependent reactivity or an induced asymmetry. In 
fact, recent experiments of Kuehanov et al. z 5 have shown 
that, in polymerization under 0 conditions, several 
systems exhibit a chain-length-dependent unequal 
reactivity in which rate constant versus chain length n 
has an S shape. 

Polymerization of asymmetric monomers and those 
exhibiting induced asymmetry have been analysed by 
several authors. Case 26 has used probabilistic arguments 
to derive the M W D  and the moments of the polymer 
formed. Gandhi et al. z7 have used kinetic methods to 
analyse some of these systems and have derived results 
for HCSTRs. 
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Figure 1 Schematic diagram of a homogeneous continuous-flow 
stirred tank reactor (HCSTR) 

moment-generating function, G(s,  0), which is a 
non-linear ordinary differential equation. Under a 
mathematical transformation, this is reduced to a linear 
ordinary second-order equation, which has been solved 
to obtain an analytical expression for the MWD of the 
polymer formed in HCSTRs with specified residence time. 
Reversible polymerization is limited by equilibrium, as 
a result of which the condensation product must be 
removed from the reaction mass in order to obtain 
polymer of high molecular weight. Industrially this is 
done by applying high vacuum on the reactor to drive 
out W 1°. Depending upon the level of vacuum applied, 
at times, smaller oligomers like P1, P2, etc., are also 
vaporized. In this paper, we have examined the effect of 
vacuum on reactor performance and evaluated an 
analytical expression of the MWD for a given vacuum 
level. 

The most general chain-length-dependent reactivity 
(i.e. S-shaped form) has been more difficult to analyse 
mathematically. Nanda and Jain 2s have assumed all 
reactions in equation (1) to be irreversible and the 
forward rate constant to be decreasing with the chain 
length n following a linear relation. They have derived 
an analytical expression for the MWD and have 
curve-fitted the experimental MWD of nylon-6,6 using 
their results. Kumar 29 has modelled the S-shaped 
dependence of rate constants in equation (1) by assuming 
that monomer reacts with a different rate constant 
compared to other oligomers; all of which react with the 
same rate constant (different from that of the monomer). 

In order to keep the mathematical analysis discussed 
above simple, step-growth polymerization has been 
assumed to be irreversible. The immediate effect of the 
chain-length-depeendent unequal reactivity is that the 
mole balance equations for various species do not 
collapse into a single one as found for the equal-reactivity 
hypothesis. Kinetic equations for general reversible 
polymerization in HCSTRs with unequal reactivity in 
the forward step can be solved only numerically and have 
been solved in the literature using the following two 
techniques. In the first one, it is recognized that the MWD 
of the polymer is a solution of a set of coupled algebraic 
equations, which must be solved simultaneously. For this 
purpose, Brown's method is the most suitable, but in 
order to find the MWD, it is necessary to specify the total 
number of equations (say Nm,x) and a good initial guess 
that is close to the actual solution. The Nma X is decided 
by the fact that the concentration of the last species, 
PN . . . .  must be less than the specified accuracy. However, 
a good initial guess poses considerable difficulty and is 
obtained by dividing the total residence time 0 into small 
increments A0. For residence time A0, the initial guess 
is taken as the conditions existing in the feed. The results 
for MWD calculated for time A0 ser~ e as the initial guess 
for time 2A0 and in this way the computation is stepped 
up to time 0. Evidently the computations become 
extremely cumbersome for large residence times and in 
this regard the second numerical technique is a 
considerable improvement. In this the MWD equations 
are decoupled and the concentrations of various polymer 
species are computed sequentially 3°-31. 

In this paper, we have analysed the unequal-reactivity 
model proposed by Kumar 31. We have written down the 
MWD relations for reversible polymerization in HCSTRs 
and from these we have derived an expression for the 

KINETIC MODEL 

Experiments of KuchanovZ 5 have shown that the forward 
rate constants in equation (1) are chain-length-dependent 
and exhibit an S-shaped curve as discussed earlier. In 
this paper this has been approximated by assuming that 
the monomer reacts differently and various rate constants 
in equation (1) are given by: 

k p ,  a i = 2(kl 1/2) 

kp,,,.=2kp m e n  m,n=l, 2, 3 . . . .  (3) 

kp,m, = 2(kp/2) m = n, m,n > 1 
! ¢ 

kp. m = kp m i> 2 

Herein, it is assumed that the reactivity of a reacted bond 
-AB-  is the same whether it is at the chain end or at an 
internal site of P,,. 

The schematic diagram ofa HCSTR is shown in Figure I. 
The feed is assumed to consist of oligomers at 
concentrations [P1]o, [P2]o . . . . .  etc. The reactor volume 
is V, with the feed flow rate as Fo. Mole balance relations 
for Pa, P2, . . . ,  P. and W, at the exit of an isothermal 
HCSTR operating at steady state, can be written for the 
kinetic model given in equation (3) in the following 
dimensionless form: 

(Px -Pig)/O= 

( P 2  - P 2 o ) / 0  = 

(P.-P.o)/O= 

( w  - W o ) / 0  = 

where 

P. = [P,]/2* o 

P.o = [P.]0/,~*o 

2o = [ ; t ] / ; * o =  ~ [P,]/2*o 
i = 1  

w = [w]/~to 

- 2 ( R -  1)p2-2P12o +2flW £ P, (4a) 
r = 2  

-2Pz2o + RPZ~ + ZflW ~ P , - f l W P  2 (4b) 
r = 3  

n - 1  

Z PrPn -r-zP.20 +2flW ~. P, 
r = l  r = n + l  

- (n - I ) f l W P .  ( 4 c )  

(R -  1)P~ + 2o z -  flW (21 - 2ot (4d) 

(5a) 

( S b )  

(5c) 

( S d )  
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,~oo =[;Jd]/;~To = Z EPJo/,~*o (5e) 
i = 1  

Wo = [W]o/,~o ( 5 f )  

2* 0 = ~ hOP,l= ~ n{P, ]o=2* (58) 
n = l  n = l  

0 =kp2* oV/F o (5h) 

R =k  ll/kp (5i) 

fl = k'p/kp (5j) 

On adding mole balance relations for all species, P1, 
P2 . . . . .  P . . . . . . .  the mole balance for the polymer 

- -  09 ( - ~ i = l P i )  can be obtained as the zeroth moment 2o 
from: 

(20--200)/0= - ( R - 1 ) p 2 - 2 ~ + f l W ( 2 1 - 2 o )  (6) 

The first moment 2~ of the polymer formed within the 
reactor represents the total count of repeat units, which 
is found to be invariant, i.e. it is equal to 2~0, the value 
for the feed; and it is equal to unity when there is no 
vacuum on the reactor. 

M O M E N T - G E N E R A T I N G  F U N C T I O N  FOR 
REVERSIBLE POLYMER IZATION 

Moment-generating function G is defined as: 

G(s, 0)= ~, s"P,(O) (7) 
n = l  

where s is a dummy variable whose numerical value is 
less than 1. The generation relation for G is obtained by 
multiplying equations (4a), (4b) and (4c) by s, s 2 and s", 
and adding them for all n gives: 

where 

and 

(G - Go)/O = - (R - 1 )P~ (2s - s 2) - 22oG + G 2 

+ 2flW(s2o - G)/(1 - s) - flW(s ?~G/Os - G) 

(8) 

s OG/Os= ~ ns"P, (9a) 
rt= l 

G o  = ~ "  snpno 
n = l  

This is rearranged to give: 

~G/~3s= 1 G 2 - ~ s ( 2 2 o + 2 f l W + l  ) ~Ws ~ b-/~w G 

(9b) 

1 /'Go 2flW-s-20~ (10) 
+ f l W s ( , O  + P 2 ( R - 1 ) ( s 2 - 2 s ) ÷  1--s J 

and 

This differential equation should satisfy: 

lim G=2o  (1 la) 
s ~ t  - 

lims ~3G/Os=21 = 1 ( l ib)  
$ ~ 1  - -  

The analytical solution of equation (10) can be 
obtained by using the following transformation: 

G - - flWs c~y (12) 
y ds 

which on substitution reduces to: 

s(1 - s) dZy/ds 2 + [~'(1 - s) + 2] dy/ds 

+ [~g0(1 - s ) R ( s ) +  (c~- %)]y = 0  (13) 

where 

~' ~=(0 -1+22o) / f iW  (14a) 

% = l / f i W O  (14b) 

R o = P 1 o - 2 p 2 ( R  - 1)0 (14c) 

R t =P2o+PZ(R - 1 ) 0  (14d) 

Ri =Pi+l ,o i=2 ,  3, .. .  (14e) 

(141") R(s) = R o + RlS + R 2  $2 . . .  

Equation (13) has singularities at s = 0  and at s=  1 and 
can be solved using the extended power series method 
of Frobenius 33. It has at least one solution, which can 
be represented in the form: 

y(s)=s ~ Z CmS" (15) 
m = 0  

where the exponent a may be any real or complex number 
and is chosen so that Co #0.  

M O L E C U L A R - W E I G H T  DISTRIBUTION IN 
REVERSIBLE POL YM E RIZ AT ION 

The solution of the hypergeometric equation (13) around 
the singularity at s = 0  gives the molecular-weight 
distribution in a natural fashion. Assuming a power series 
solution as in equation (15) gives the indicial equation: 

a [ ( a -  1)+~' + 2] = 0  (16a) 

which gives the roots of o as: 

a l = 0  a2= - ( ~ ' +  1) (16b) 

The solution corresponding to ol = 0  is given by: 

yl(S) = ~ Crasm:Co ~ rm Sm (17) 
m = O  m = O  

where 

and 

rm = C,,/Co (18a) 

ro= 1 (18b) 

The coefficients r,, for any m are obtained recursively 
from: 

rm+ 1 = {[m(m + ~ ' -  1 ) - ( ~ -  %)]rm 

+ [ ~ 2 0 ( E m _ l - Z , , ) ] } / ( m + l ) ( m + ~ ' + 2 )  (18c) 

where 
m - 1  

Y~m_t = ~ Rjr, ._l_) (18d) 
j = O  

Z,. = ~ RF,._ j (18e) 
j = O  
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The Rj in equation (18) are the coefficients of polynomial 
R(s) in equation (13) and are given as in equations (14c, 
d, e). The solution corresponding to a2 = - (a '+ 1) is also 
obtained similarly: 

y 2 ( s )  = C~ ~ rraS, m-~'-i (19) 
m = 0  

The general solution for y is given by" 

y(s) = Yl (s) + Y2 (s) 

=Co ~, r,sr"+c~ ~ r *sra-a'-I (20) 
m=O m=O 

However, since G is a series in s with integer exponents, 
y2(s) cannot exist and C* must be zero. Therefore: 

y = C  o ~ r ,s  m 9 = C  o ~ mr,s " -1  (21) 
m = O  r a = l  

On reversing the transformation we get the solution for 
equation (10) and G is given by: 

G = - fl Wsp(s)/y(s) (22a) 

= -- f lW rls + 2r2s2 + 3r3s3  + ' ' "  (22b) 
r Od-rlsq-r2 s2+ ... 

1 -1- als -t- ~/2 s2 "~ a 3  s 3  q -  • • • 
= -- flWrls (22c) 

1 +bls+b2sZ+b3sa+ ... 

= - f lWr l s ( l+cas+c2s2+c3s3+ .. .) (22d) 

The coefficients ci in the series of equation (22d) are 
obtained from: 

Co = 1 (23a) 

ca = a l - b  1 

c, = a , -  ~ bjc,_~ n>~2 (23b) 
j = l  

a, = (n + 1)G + 1/rl (23c) 

and 

b, = r. (23d) 

On comparing with the definition of G in equation (7) 
we get: 

P1 = - flWra (24a) 

P. = - f lWrlc,-  1 n >i 2 (24b) 

where 

r 1 = - [1/~' + 2)] [ ( ~ -  Cto) + ~20Ro]ro (24c) 

EQUILIBRIUM MOLECULAR-WEIGHT 
DISTRIBUTION 

The equilibrium M W D  is obtained by considering the 
limit 0~oo.  Under these conditions, the moment- 
generating relation in equation (10) reduces to: 

0G_ 1 G2 - 1 (2)~o+flWll+Ss) G 
Os flWs flWs 

+fl~ss ( P ~ ( R _  l ) (s~ . , 2flWs2o'~ ) (25) 

and the corresponding transformed equation (using the 

transformation G = -flWs(Oy/Os)/y) is written as: 

s(1 - s) d2y/ds 2 + [0~(1 - s) + 2] dy/ds 

+ JR(s) (1 - s) + ct]y = 0 (26) 

where 

= 22o/fl W (27a) 

Ro = - [2p2/(flW) 2] ( R -  1) (27b) 

R 1 = p2 (R - 1)/(flW) 2 (27c) 

R(s) = R o + RIS (27d) 

The indicial equation and its roots remain the same as 
a 1 = 0 and a2 = - (~ + 1). As before, Yl (s) alone exists and 
the complete series solution is: 

y(s )=C o ~ r,,s m (28a) 
m = 0  

which yields: 

p(s)=Co ~ mr,.s" (28b) 
m = O  

The recursive relations for the r's changes to: 

= (m + cQ(m - 1 ) 2  )r ,. -+ E ' -  x - Z "  (29) 
rm+l (m+l ) (m+c t+  ( m + l ) ( m + ~ + 2 )  

where 

ro = 1 (30a) 

Zo =Roro (30b) 

~1 = Rorl + Rlro (30c) 

Z, ,=Ror. ,+Rlr=_a m>~2 (30d) 

With these, the M W D  is determined by equation (24) 
except that now: 

rl = - [ ( ~ -  Ro)/(~ + 2)]to (30e) 

EFFECT OF VACUUM ON THE MOLECULAR- 
WEIGHT DISTRIBUTION 

As observed earlier, in order to obtain a polymer of high 
molecular weight, a vacuum is applied to push the 
polymerization in the forward direction. In the presence 
of flashing, the outlet flow rate would differ from the inlet 
flow rate by F w, the amount of condensation product 
lost in evaporation. Assuming the density of the product 
remains unchanged (say it is p), the modified M W D  
equations are: 

(PI - Plo)/0 = - 2(R - 1)p2 _ 2P12 ° + 2flW ~ P, 
r = 2  

+ (pw/Ow)P1 (3 la) 

(P2 - P2o)/0 = - 2P22o + Rp2 + 2flW ~ P , -  flWP2 
r = 3  

+ (pw/pOw)P2 (31 b) 
n- -1  

(P,--P,o)/O = ~. PrP , - , - -2P ,2o+2f lW ~ P~ 
r = l  r = n + l  

-- (n -- 1)flWP, + (pw/pOw)P, (31c) 
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where 0w has the definition: 

0w - kp2*o V/Fw (32) 

The balance for condensation product is given by: 

( W -  Wo)/O = (R - 1)p2 + 22 _ flW(2, - 20) + 

(pw/ pOw ) W -  pw/ Mw2 ~ o0w (33) 

and the mole balance for the total polymer is given as: 

(20 - 200)/0 = - (R - 1)P 2 - -  2(z) + f l W  (2,  - 2 o) 

+ (pw/pOw)2 o (34) 

The generation relation for the moment-generating 
function G is derived as: 

(G - Go)/O = - (R - l )p2 (2s - -  s 2 )  - 22oG + G 2 

+ 2,6Wts;.o - 6)/(1 - s ) -  ,aW(s aG/,~s-  C,) 

+ (pw/pOw)O (35) 

This is rearranged to give: 

c~G_ 1 G2_fll_ws(22o+ 2 f l W + l _ f l W _  pw ~ G 
~s flWs ( l - s )  0 pOwJ 

+ f l l s ( ~ + p 2 ( R - 1 ) ( s 2 - 2 s ) + ~ )  (36) 

Using the earlier transformation G = -flWs(Oy/Os)/y the 
above equation again reduces to equation (13) except 
that now a and ~' are different: 

c~' = ~-- pw/pOwflW (37) 

The MWD is, therefore, again given by equation (24). 
The following three situations may arise in the presence 
of a vacuum. 

Closed reactor 
If the pressure in the reactor is large, there is no 

cross-flow of the by-product and Fw=0.  The concen- 
tration of W in HCSTR is then given by the 
stoichiometry, i.e.: 

W -  Wo + 2 o o - 2  o (38) 

where Wo is the molar concentration of W in the feed. 
It is further observed that in equation (4a): 

k P,= ( 2 o - P , )  (39) 
i = 2  

On substituting this, P1, 2o and Wcan be calculated by 
solving equations (4a), (6) and (38). Once these are 
determined, the MWD is found from equation (24), as 
derived in the earlier section. 

Only condensation product flashing 
When the vacuum applied is large, the condensation 

product W begins to flash and 0 w in equations (31) to 
(37) is a finite quantity. The solution procedure in the 
presence of W flashing consists of solving for P,,  2o and 
Wusing equations (31a), (33) and (34). However, 0 w is 
unknown and is determined by assuming a vapour-liquid 
equilibrium between the reaction mass and the escaping 
vapour. The mole fractions of polymer and condensation 
product are given by: 

Xw = W/(W+ 20) (40a) 

and 
xp = 20/(I4I+ 2 o) (40b) 

Since the polymer is assumed not to flash, we can write 
the following relationship using Raoults' law: 

Wl(2o + w )  = PTIP ° (40c) 

where Pv is the total pressure of the reactor and p o  the 
vapour pressure of the condensation product. 

Condensation product and P1 flashing 

As the chain length of the polymer increases, its relative 
volatility falls. As a first approximation, it is assumed 
that only P1 evaporates. Normally monomer is 
expensive, and it is desirable to recycle it after 
condensation as shown in Figure I. When W and Pa leave 
the reaction mass, there is a change in volume, which is 
usually small. If it is assumed to be small, then the mole 
balance for P1, P2, etc., in the broken square in Figure 1 
can easily be shown to be the same as given in equation 
(31). If the vapour-liquid equilibrium is given by Raoult's 
law then the following relation is satisfied: 

pO P1 W pO 
- -  ~ - 1 ( 4 1 )  

PT 2 o + W  2 o + W P  T 

Herein, pO and p o  are the vapour pressures of Pa and 
W respectively and PT the total reactor pressure. 
Equation (41) can be used to determine the concentration 
of W in the HCSTR, which on substitution in equation 
(33) yields the moles of W flashed or Fw. Since the 
transformed equation in y does not change, the MWD 
given in equation (24) also remains unaltered, except that 
W appearing in it must be properly evaluated in the 
presence of flashing. 

COMPUTATIONAL SCHEME 

The MWD of the polymer formed in HCSTRs of given 
residence time is given by equation (24), which involves 
the concentrations of species 2o, P1 and W. We first 
consider the case where P1 does not flash and the 
condensation product W may. In order to calculate the 
2 o and P,, we substitute equation (39) into equation 
(31a): 

(P , -Plo) /O = - 2 ( R , -  1)P 2 - 2P,2o + 2flW(2o-P~) 

+ (pw/pOw)P, (42) 

Equations (34) and (42) can now be solved simul- 
taneously for 2o and P1. However, it needs information 
on W. If the condensation product does not evaporate, 
Wis determined by equation (38), otherwise equation 
(40) or (41) is used to find W. 

One of the convenient methods to find roots of 
equations (34) and (42) is to use the Newton-Raphson 
method in which these are rearranged as: 

F, = (PI 0 - P1) /0-  2(R - 1 )p2 _ 2P~2o + 2fl W(2o - P1) 

+ (pw/pOw)P, (43a) 

Fz = (2oo - 2 o ) / 0 -  (R - 1)P 2 - -  202 + f lW0.1  - 20) 

+ (pw/pOw)2 o (43b) 

where for the correct values of P1 and 2o, Fa and F2 
would be identically equal to zero. The procedure of 
computation consists of starting with a guess of 2o and 
determining P1 analytically using equation (42). 
Equation (43b) is checked if these 2o and PI satisfy 
equation (34). While guessing the next plausible value 
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Table 1 Algorithm for computation of M W D  of polymer formed in 
HCSTRs 

Read fl, R and reactor residence time 0 

Read reactor temperature 

Check from equation (40)/(41) if there is flash. 
- -  If there is, calculate Wfrom this relation 

for specified 2 and P1 
If no flash, use 
equation (38) to 
calculate Wfor 
given 20 

I Use Newton-Ra ~hson technique to 
~determine P and P from equation (43) 

Calculate rl from equation (18) 

l 
Determine al, bi, ci from equation (23) 

Calculate MWD of the polymer from equation (24) 

of 20, one moves along the gradient, keeping in mind 
that both 2o and P1 must be less than 1. The 
Newton-Raphson technique of solution of these 
equations has been discussed in our earlier publications 
and we find that convergence always occurs z9-32. A 
general computer program has been developed and its 
flow chart is summarized in Table I. 

RESULTS AND DISCUSSION 

The solution of the M W D  of the polymer formed in 
HCSTRs, derived in this work, is in the most general 
form and can handle feed having higher oligomers. The 
analytical solution given in equation (24) involves three 
infinite series, a~, b~ and c~, i = 1, 2 . . . . .  and it is important 
that they all be convergent; that is the feed to the HCSTR 
consists of oligomers Plo, P2o, P3o, etc., such that: 

200 = ~ P,o (44a) 
n = l  

and 

P,o=22oo(1-2oo)"- 1 n=  1, 2 . . . .  (44b) 

This has been derived by Flory for the case of 
equal-reactivity hypothesis (i.e. parameter R = 1) as the 
M W D  of the polymer formed in batch reactors with 
monomer as feed. It is thus seen that the feed is completely 
characterized by the zeroth moment 2oo, which gives the 
total moles of polymer in it. Equation (44) satisfies the 
condition that the first moment 21 is always unity. 

Earlier techniques of computing the M W D  of the 
polymer consisted of solving a large number of mole 
balance equations simultaneously for various species. 
This was found to take considerable computation time. 
The present analytical solution given in equation (24) 
requires that the total moles 2o and the concentration of 

monomer P1 must be known. Equations (34) and (42) 
governing these are quadratic and in principle can be 
solved analytically. However, the use of the Newton- 
Raphson method is considerably more convenient. The 
computations for 20 and P1 can be made to an accuracy 
of 10 -5 within 15 to 20 iterations, which does not take 
more than 0.01 s of CPU time on a DEC 1090. In order 
to determine the M W D  of the polymer, series bi given in 
equation (23) can be determined even by a desk 
calculator. The at and e~ series are only a linear 
combination of the terms of the bi series and can also be 
easily evaluated, in this way giving the M W D  of the 
polymer. 

We have carried out extensive computations with the 
variation of the reaction parameters using the analytical 
solution presented in this paper. We have also determined 
the M W D  of the polymer using some of the numerical 
techniques described in the literature and we found a 
perfect match between the two, in this way ensuring the 
convergence of the cl series. 

There have been a few studies reported in the literature 
on the unequal reactivity of monomer, and the M W D  of 
the polymer formed in HCSTRs has been computed by 
one of the recommended numerical techniques. These 
studies assume the feed to consist of monomer only, with 
the condensation product not flashing from the reaction 
mass. We have relaxed both these assumptions and show 
that they serve as important engineering parameters 
having considerable ramifications upon the M W D  of the 
polymer. We divide our discussion in the following into 
steady-state and equilibrium polymerization and present 
results to show how a polymer of the desired property 
can be made by suitably operating the HCSTR. 

HCSTRs  operating under steady state 
The equations governing the M W D  of the polymer 

formed in HCSTRs involve parameters R and/3, which 
are temperature-dependent. In generating Figure 2, we 
assumed R to be greater than unity and calculated the 
M W D  for different values of/3 and 2o0. It has already 
been discussed that the feed is assumed to have the Flory 
distribution, which means that the value of 200 
completely characterizes it; 2oo is equal to unity for pure 
monomer feed while higher oligomers are present in 
larger concentrations as 2oo decreases to smaller values. 
In Figure 2, the molecular-weight distributions of 
polymer for three 2oo and three/3 values are given for a 
reactor residence time of 0 = 1. The results in this figure 
reveal that the relative change in the M WD is smaller as 
2oo is reduced. As an example, for 2oo =0.4, the moles 
of monomer in the feed is 0.16, and this figure reveals 
that for /3= 5.0 there is almost no change in monomer 
concentration at 0 = 1 ; and for 2oo = 0.2, higher oligomers 
depolymerize to give P1 in the outgoing stream at more 
than 0.04 concentration. This figure also reveals that as 
/3 is increased, there is less polymerization. Higher 
oligomers tend to depolymerize. 

Figure 3 gives the M WD of the polymer for R less than 
unity. Since R <  1, the monomer has the tendency to 
react less than higher oligomers. As a consequence, for 
monomer feed (i.e. 2oo = 1), there is small polymerization, 
which is indicated by a sharp M W D  as shown. On 
comparing this with Figure 2, it is found that about 80% 
monomer remains unreacted as opposed to 50% for 
R=2 .  The change in M W D  curves is also found to be 
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smaller with change in R as 200 for the feed reduces. This 
is expected because unequal reactivity has been assumed 
to be restricted to the monomer only. As the feed to the 
HCSTR becomes more polydisperse, the effect of R is 
small simply because of the reduced concentration of the 
monomer in it. As a consequence, the M W D  of the 
product deviates only little from the Flory distribution, 
except that the conversion of functional groups has 
increased. 

Sometimes it is easier to compare the molecular-weight 
distributions by examining the moments. The average 
chain length/~, of the polymer is defined as the ratio of 
the first and the zeroth moments, and the results have 
been plotted in Figure 4. The residence time 0 has been 
varied up to the value of 20, and for small fl the chain 
length is found to increase continually. However, as fl is 
increased, the conversion reduces and consequently the 
chain length of the polymer is limited by the equilibrium 
value as shown. Figure 4 shows results for three R values 
for every/3 and, as R increases for a given/3,/~, is found 
to increase. As has been observed earlier, when R is less 
than unity, there is a preponderance of unreacted 
monomer. This would in turn imply smaller #., which is 
indeed observed in Figure 4. In Figure 5, ]~n versus 

step-growth polymerization." A. Kumar and A. Khanna 

residence time has been plotted for 200 =0.4, which is 
compared with Figure 4. The kinetic model proposed in 
this work assumes unequal reactivity in monomer only. 
Consequently when 20o is lowered, the moles of monomer 
in the reaction mass reduces (0.16 moles) and the effect 
of R on the chain length is small, as seen in this figure. 

In his analysis of step-growth polymerization, Fiery 
suggested a binomial distribution (sometimes called a 
Flory distribution) for the polymer formed in batch 
reactors. This in turn implies that the polymer formed is 
completely characterized by the conversion (and 
therefore the chain length,/~.) of the functional groups. 
The polydispersity index (PDI) of the polymer is defined 
as the ratio of the weight-average chain length Pw 
(=22/2~) and the number-average chain length /~, 
(=)h/;~o) as: 

PDI =/~w//~. (45) 

In the case of the Flory distribution, a plot of PDI versus 
/~. should be independent of ft. For the kinetic model 
discussed here, PDI versus #. has been plotted in Figure 6, 
and it is observed that PDI depends not only on #, but 
also on fl and R. Assuming the equal-reactivity 
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hypothesis, for polymerization in a batch reactor with 
monomer feed, Flory has shown that the PDI is limited 
to a maximum value of 2. Beisenberger 4 has analysed 
irreversible step-growth polymerization in HCSTRs for 
monomer feed and shown that polydispersity index is 
not limited to 2, but can reach any value. As opposed 
to all these, reversible polymerization in HCSTRs 
exhibits an entirely different behaviour. The PDI 
undergoes a maximum, which depends on/7 as well as 
R as seen in Fioure 6. We find that, as/7 is reduced, the 
PDI takes on a larger value. When R is small for given 
/7, the reaction mass has a large amount of unreacted 
monomer, due to which PDI is increased. 

Equilibrium polymerization 
On careful examination of the mole balance relation 

for the equilibrium case, we find that the MWD is 
independent of the type of reactor. If we charge the 
reactor with 200 moles of feed and Wo moles of 
condensation product, then the following stoichiometric 
relation is valid: 

Weq = 200 + Wo - •Oeq (46) 

provided there is no flashing of the condensation product. 
Herein "~Oeq and W~q represent the total moles of polymer 
and condensation product in the reaction mass at 
equilibrium. When there is a flashing, Win the reaction 
mass can be reduced to any level and serves as a degree 
of freedom for tailoring the polymer to the requirements. 
Results for the MWD of the polymer have been generated 
for equilibrium polymerization, and are plotted in 
Figures 7 and 8 for R less than and greater than unity, 
respectively. In these figures, W~q serves as the maximum 
moles of condensation product in the reaction mass and 
curves marked A represent the computed MWD for this 
case. The moles of condensation product can be 
conveniently reduced by lowering the pressure of the 
reactor, and the curves marked B and C have been 
generated assuming that the condensation product has 
fallen to one-half and one-quarter of the maximum W~q 
calculated by equation (46), respectively. On doing this, 
we find that the monomer concentration falls from 0.75 
to 0.45 moles for curve B and to 0.28 for curve C. This 
represents a considerable reduction especially when the 
monomer must be separated because of its carcinogenic 
nature. In Figure 8, similar behaviour is observed except 

for the fact that R = 2 represents the case when monomer 
reacts preferentially to form higher oligomers. This would 
lead to larger chain length and polydispersity index, as 
seen in Fioures 9 and 10, where these have been plotted 
as a function of/7. As the contribution of the reverse 
reaction increases with increasing/7, the chain length #. 
falls sharply and afterwards its sensitivity reduces. At a 
given/7, it is always possible to attain any/J,, which can 
be obtained by lowering the concentration of the 
condensation product in the reaction mass. 

CONCLUSIONS 

Unequal reactivity in reversible step-growth polymer- 
ization was observed to be more of a rule and it was 
modelled by assuming monomer reacting differently from 
higher oligomers. The mole balance relations for various 
oligomers were established for the case when reversible 
polymerization is being carried out in a homogeneous 
continuous-flow stirred tank reactor. From these, the 
generation relation for the moment-generating function 
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polydispersity index versus ~ for monomer feed at 2o0 = 1.0: (A) no 
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has been der ived,  which is a non- l inear ,  f i rs t -order  
o rd ina ry  differential  equat ion .  We have p roposed  a 
ma thema t i ca l  t r ans fo rma t ion  under  which it reduces to 
a l inear  second-orde r  o rd ina ry  differential  equat ion .  We 
have subsequent ly  der ived the analy t ica l  so lu t ion  of  this, 
from which we de te rmined  the express ion for M W D  of 
the po lymer  formed in HCSTRs .  We have cri t ical ly 
examined  the effect of vacuum upon  the solut ion of  the 
M W D  and  ana lysed  several  special cases of po lymer -  
izat ion in H C S T R s  with condensa t ion  p roduc t  and  
po lymer  flashing. Po lymer iza t ion  at  equi l ib r ium has also 
been analysed ,  in this way deve loping  the comple te  
so lu t ion  of reversible po lymer i za t i on  in H C S T R s .  

In this pape r  we analyse  the s i tua t ion  when the H C S T R  
is par t  of a t ra in of po lymer i za t ion  reactors ,  where its 
feed need not  necessari ly be pure  m o n o m e r .  We show 
that  the na ture  of the feed has a cons iderab le  effect on 
the final p roduc t ,  which is due to the fact that  the 
po lyd ispersed  feed has a smal ler  a m o u n t  of unreac ted  
m o n o m e r .  F l o r y  has shown tha t  the M H I D  of po lymer  
formed by s tep-growth  po lymer i za t ion  in ba tch  reactors  
is b inomia l ly  d is t r ibuted .  This implies that  the plot  of 
po lydispers i ty  index versus average chain  length must  be 
independen t  of  ~. U n d e r  reversible po lymer i za t ion  in 
H C S T R s ,  we show tha t  the s i tua t ion  is cons iderab ly  more  
complex,  and  depend ing  upon  the values of  fl and  R, 
po lydispers i ty  undergoes  a m a x i m u m  before set t ing upon  
the equi l ibr ium value. 

We have subsequent ly  presented  results for equi l ibr ium 
po lymer iza t ion ,  which are independen t  of  the type of 
reac tor  as well as the na ture  of the feed. We observe that  
if W o and  200 in the feed are given, then ei ther  W o r  20 
can be specified in the p roduc t  s t ream independent ly .  
This  in t roduces  a degree of f reedom that  can be uti l ized 
to get any  des i red  p r o p e r t y  of  the po lymer  formed in 
HCSTRs .  
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